
Engineering Software Architectures of
Blockchain-Oriented Applications

Florian Wessling
Paluno, University of Duisburg-Essen

Schuetzenbahn 70, 45127, Essen, Germany
florian.wessling@paluno.uni-due.de

Volker Gruhn
Paluno, University of Duisburg-Essen

Schuetzenbahn 70, 45127, Essen, Germany
volker.gruhn@paluno.uni-due.de

Abstract—Building blockchain-oriented applications forces de-
velopers to rethink the architecture of their software from the
ground up. The use of blockchain technology poses multiple
challenges as the software is operated in a decentralized, trust-
less, transparent and tamper-proof environment. When building
decentralized apps the developers need to deal with blockchain
properties such as decentralization, a certain delay in the
execution of function calls of distributed code contracts and
particularly need to consider how users interact with their
application. We surveyed several existing decentralized apps
and examined their architecture to identify multiple reoccurring
architectural patterns, each with different implications regarding
the trust, user experience and security. As building blockchain-
oriented applications is gaining importance, models, tools and
methods for blockchain-oriented software engineering have to be
developed. This paper gives a first hint towards architectural
patterns for blockchain-based applications and motivates why
it is important to consider how the user interacts with the
decentralized apps.

I. INTRODUCTION

Blockchain-Oriented Software Engineering (BOSE) [1] is
an emerging area of research for building decentralized appli-
cations (abbreviated ”DApps”) based on blockchain technol-
ogy (see [2], [3]). Currently, the Ethereum blockchain [4], [5]
is the most prominent platform for building DApps and will
therefore be the focus of this paper. DApps can be described as
open-source software, storing its data and records of operation
in a decentralized ledger that participants agree on using
a consensus algorithm and employing a token mechanism
(see [6], [7]). DApps generally consist of two parts: Business
logic and an interface for users to interact with the DApp.

The business logic is represented by one or more Executable
Distributed Code Contracts (abbreviated ”EDCC”, a more
precise term for Smart Contracts1), which are deployed on the
blockchain network. There are multiple ways how the front-
end could be designed to allow the users the interaction with
the business logic. As EDCCs are executed in a decentralized
network that ensures the correct completion of DApp function
calls, the user interface has to handle a certain delay in
execution. In one variant, the users would interact with the
deployed business logic directly (by running an own or using
a public blockchain node). In another variant, a centralized

The European Union supported this work through the project
CPS.HUB NRW, EFRE No. 0-4000-17.

1cf. https://www.ethnews.com/edcc

server of the DApp provider is used, that interacts with the
EDCC on behalf of the users. Nevertheless, decisions like
this lead to the architectural design of the DApp that has a
strong impact on attributes such as trust, user experience and
security. In this paper we will examine the architectural design
of existing DApps, identify possible architectural patterns and
compare their advantages and disadvantages.

II. ARCHITECTURAL PATTERNS OF DAPPS

Pattern A – Self-Generated Transactions

Figure 1 shows the basic architectural pattern of a DApp in
which the users directly interact with the EDCC by generating
and sending transactions themselves. Three variants exist:
Users can (1) directly send a transaction to the blockchain, (2)
use a web frontend such as MyEtherWallet [8] or MyCrypto
[9] or (3) use a browser with built-in wallet such as Chrome
with MetaMask [10] or a cryptobrowser such as Cipher [11]
or Status [12] (each variant can be carried out with a private
blockchain node running on the user’s device or a public node
operated by a third-party, e.g., Infura [13] or Etherscan [14]).

Browser

MetaMask 
/ Wallet

Private or Public Blockchain Node

MyEtherWallet
Blockchain 

/ EDCC

Fig. 1. DApp Pattern A – Self-Generated Transactions

For directly interacting with an EDCC it is necessary
that the interface description (Application Binary Interface,
ABI) of the EDCC is publicly available. Furthermore, for
understanding the specific actions carried out by a contract,
the source code should be published as well. DApps structured
with this pattern have the security advantage that the users
keep their private keys on their device and are able to generate,
sign and send transactions on their own. Almost no trust
is required in infrastructure or third-party providers as the
signed transactions cannot be manipulated. The drawback of
this approach is the low user experience as the process is
error-prone and requires a strong technical understanding.



This architectural pattern can be found in decentralized cryp-
tocurrency exchanges such as EtherDelta [15], IDEX [16] or
gambling DApps such as Ethorse [17].

Pattern B – Self-Confirmed Transactions

The pattern illustrated in Figure 2 offers more convenience
for the users than Pattern A as the interaction with the
DApp is primarily done using a cryptobrowser or MetaMask.
Transactions are not generated by the user but are triggered by
the DApp website, presented to the user for further verification
and then manually sent to the blockchain node. Thus, this
pattern offers a trade-off between convenience and trust that is
required in the DApp website providing the transaction details.

Browser

MetaMask 
/ Wallet

DApp-Website

Private or Public 
Blockchain 

Node

Blockchain 
/ EDCC

Fig. 2. DApp Pattern B – Self-Confirmed Transactions

Manually generating transactions can be hard or is not
always feasible, especially when it is necessary to query the
current state of the blockchain or to gather additional data,
e.g., like the marketplace of CryptoKitties [18]. This requires a
certain trust in the DApp provider as transactions are generated
but the implication of their execution is not always completely
transparent (e.g., the geneScience contract of CryptoKitties
without published source code or ABI2). Similar to Pattern A,
the private key resides with the user and still some technical
knowledge is required regarding transactions and gas prices.

Pattern C – Delegated Transactions

Browser

DApp-
Website

DApp-Server/Backend

REST Private or 
Public 

Blockchain 
Node

DApp 
Backend

Logic

Tr
an

sa
ct

io
ns

Private or 
Public 

Blockchain 
Node

Websocket
Blockchain 

/ EDCC

Fig. 3. DApp Pattern C – Delegated Transactions

Even more convenience and a high ease of use is achieved
with Pattern C as illustrated in Figure 3. In this case the
DApp provider offers a website the users can interact with, not
requiring a cryptobrowser or MetaMask plugin. The website
communicates with the DApp backend logic via REST calls
and encapsulates all blockchain-specific actions. This means
the backend is responsible for interacting with the blockchain
and is sending transactions on behalf of the user, who is not
able to validate them. Pattern C therefore offers the maximum
convenience but also requires complete trust in the DApp

2only accessible as binary code or opcodes on https://etherscan.io/address/
0xf97e0a5b616dffc913e72455fde9ea8bbe946a2b

provider who is handling user logins and manages the private
keys. In case the EDCCs used by the provider are known,
it would be possible for the user to examine the execution
of transactions triggered by the backend. The user can watch
the state of the EDCCs or receive feedback via websockets
from the provider itself. Cryptocurrency exchanges such as
Kraken [19], Binance [20] or Bitfinex [21] are a common
example for this pattern as they usually interact with the
blockchain on behalf of the user.

III. CONCLUSION

In this paper we surveyed the architecture of several existing
DApps in order to identify three common patterns and com-
pare their impact on trust, user experience and security. We
motivated why it is important to consider these aspects when
engineering software architectures of blockchain-oriented ap-
plications. Furthermore we highlight that additional research
is required to examine patterns in terms of maintainability,
infrastructure costs, transaction costs and complexity.

REFERENCES

[1] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-
oriented software engineering: Challenges and new directions,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), 2017, pp. 169–171.

[2] A. M. Antonopoulos, Mastering Bitcoin: Unlocking Digital Crypto-
Currencies, 1st ed. O’Reilly Media, Inc., 2014.

[3] M. Swan, Blockchain: Blueprint for a New Economy, 2015.
[4] V. Buterin, “Ethereum: A next-generation smart contract and

decentralized application platform,” 2013. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/White-Paper

[5] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger.” [Online]. Available: http://gavwood.com/paper.pdf

[6] D. Johnston, S. O. Yilmaz, J. Kandah, N. Bentenitis, F. Hashemi,
R. Gross, S. Wilkinson, and S. Mason. DecentralizedApplications:
Decentralized applications white paper and spec. (Accessed 2018-
03-15). [Online]. Available: https://github.com/DavidJohnstonCEO/
DecentralizedApplications

[7] S. Raval, Decentralized applications: harnessing Bitcoin’s Blockchain
technology, 2016, ISBN 978-1-4919-2452-5.

[8] MyEtherWallet LLC. Myetherwallet. (Accessed 2018-03-15). [Online].
Available: https://www.myetherwallet.com

[9] MyCrypto, Inc. Mycrypto. (Accessed 2018-03-15). [Online]. Available:
https://www.mycrypto.com

[10] ConsenSys. Metamask. (Accessed 2018-03-15). [Online]. Available:
https://metamask.io

[11] HardFork Inc. Cipher. (Accessed 2018-03-15). [Online]. Available:
https://www.cipherbrowser.com

[12] Status Research & Development GmbH. Status – a mobile ethereum
os. (Accessed 2018-03-15). [Online]. Available: https://status.im

[13] ConsenSys AG. Infura. (Accessed 2018-03-15). [Online]. Available:
https://infura.io

[14] Etherscan.io. Etherscan – the ethereum blockchain explorer. (Accessed
2018-03-15). [Online]. Available: https://etherscan.io

[15] EtherDelta. Etherdelta. (Accessed 2018-03-15). [Online]. Available:
https://etherdelta.com

[16] Aurora Labs S.A. Idex – decentralized ethereum asset exchange.
(Accessed 2018-03-15). [Online]. Available: https://idex.market

[17] Ethorse. (Accessed 2018-03-15). [Online]. Available: https://ethorse.com
[18] AxiomZen. Cryptokitties. (Accessed 2018-03-15). [Online]. Available:

https://www.cryptokitties.co
[19] Payward, Inc. Kraken. (Accessed 2018-03-15). [Online]. Available:

https://www.kraken.com
[20] Binance.com. Binance. (Accessed 2018-03-15). [Online]. Available:

https://www.binance.com
[21] iFinex Inc. Bitfinex. (Accessed 2018-03-15). [Online]. Available:

https://www.bitfinex.com


